Classification of generalized Einstein metrics on three-dimensional Lie groups
نویسندگان
چکیده
We develop the theory of left-invariant generalized pseudo-Riemannian metrics on Lie groups. Such a metric accompanied by choice divergence operator gives rise to Ricci curvature tensor and we study corresponding Einstein equation. compute in terms tensors (on sum algebra its dual) encoding Courant algebroid structure, operator. The resulting expression is polynomial homogeneous degree two coefficients Dorfman bracket with respect orthonormal basis for metric. determine all three-dimensional
منابع مشابه
Einstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملEinstein–Maxwell–Dilaton metrics from three–dimensional Einstein–Weyl structures
A class of time dependent solutions to (3 + 1) Einstein–Maxwell-dilaton theory with attractive electric force is found from Einstein–Weyl structures in (2+1) dimensions corresponding to dispersionless Kadomtsev–Petviashvili and SU(∞) Toda equations. These solutions are obtained from time–like Kaluza–Klein reductions of (3 + 2) solitons. ∗email [email protected]
متن کاملSlant helices in three dimensional Lie groups
In this paper, we define slant helices in three dimensional Lie Groups with a bi-invariant metric and obtain a characterization of slant helices. Moreover, we give some relations between slant helices and their involutes, spherical images.
متن کاملFeedback Classification of Invariant Control Systems on Three-Dimensional Lie Groups
We consider left-invariant control affine systems evolving on Lie groups. In this context, feedback equivalence specializes to detached feedback equivalence. We characterize (local) detached feedback equivalence in a simple algebraic manner. We then classify all (full-rank) systems evolving on three-dimensional Lie groups. A representative is identified for each equivalence class. Systems on th...
متن کاملInvariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition Ric(ρ) = c · ρ for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l), and on the symplecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 2023
ISSN: ['1496-4279', '0008-414X']
DOI: https://doi.org/10.4153/s0008414x23000056